Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 127
Filtrer
1.
Environ Toxicol Chem ; 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38563658

RÉSUMÉ

The microplastics (MPs) formed by broken plastic film may migrate in the soil under drip irrigation. To investigate the migration distribution of MPs in desert farmland soil under drip irrigation conditions, our study was conducted on farmland in Xinjiang (China). A MP drip irrigation penetration migration testing device was set up in combination with Xinjiang farmland irrigation methods to conduct a migration simulation experiment. The results showed that the migration amount of MPs in soil was significantly positively correlated with the amount of drip irrigation, and significantly negatively correlated with the soil depth; in addition, the relationship between the migration amount of MPs in different types of soil was: clay < sandy loam < sandy soil. Under drip irrigation conditions, the migration rates of MPs were 30.51%, 19.41%, and 10.29% in sandy soil, sandy loam soil, and clay, respectively. The migration ability of these three particle sizes of polyethylene MPs in soil was ranked as follows: 25 to 147 µm > 0 to 25 µm > 147 to 250 µm. When the drip irrigation volume was 2.6 to 3.2 L, horizontal migration distances of MPs exceeded 5 cm, and vertical migration distances reached more than 30 cm. Our findings provide reference data for the study of soil MP migration. Environ Toxicol Chem 2024;00:1-10. © 2024 SETAC.

2.
Sci Rep ; 14(1): 5110, 2024 03 01.
Article de Anglais | MEDLINE | ID: mdl-38429397

RÉSUMÉ

Platostoma palustre is an annual herb and an important medicinal and edible plant in southern China. Plastic-film mulching is an effective agronomic practice in the cultivation system of P. palustre, of which black-film mulching is the most common. However, fewer researches have been focused on the use of other colors of plastic films in P. palustre cultivation. In this study, different colors (white, black, red, and green) of plastic film were adopted, and the effects of different colors of plastic film mulching on the soil temperature, yield, and metabolites of P. palustre were investigated. The results showed that the fresh weight of a single plant of the green film treatment was significantly higher than that of the white film treatment (n = top 28). Based on the results of three temperature measurements, the soil temperature was almost the highest in the red film treatment and lowest in the white film treatment. The metabolomic analysis revealed that a total of 103 differential metabolites were identified. Among these, the gluconic acid, deoxyribose, and N-Acetylmannosamine in the red film treatment presented the highest abundance compared with the other treatments, meanwhile, the abundances of the five monosaccharides in the red film treatment were significantly higher than those of the green film treatment. Moreover, the sucrose, trehalose, and D-(+)-trehalose in the green film treatment exhibited the highest abundance, and the abundances of eight different amino acids in the red film treatment were almost the lowest while those in the black film treatment were almost the highest. Further analysis of the membership function values indicated that the black and red film treatments might be more suitable for the cultivation and quality production of P. palustre in comparison with the other two treatments. This study will provide a theoretical basis for improving the efficient cultivation technology of P. palustre and forming a theoretical system of P. palustre film mulching cultivation.


Sujet(s)
Sol , Tréhalose , Sol/composition chimique , Température , Matières plastiques , Agriculture/méthodes
3.
Sci Total Environ ; 924: 171472, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38458459

RÉSUMÉ

Plastic film mulching can maintain soil water and heat conditions, promote plant growth and thus generate considerable economic benefits in agriculture. However, as they age, these plastics degrade and form microplastics (MPs). Additionally, pesticides are widely utilized to control organisms that harm plants, and they can ultimately enter and remain in the environment after use. Pesticides can also be sorbed by MPs, and the sorption kinetics and isotherms explain the three stages of pesticide sorption: rapid sorption, slow sorption and sorption equilibrium. In this process, hydrophobic and partition interactions, electrostatic interactions and valence bond interactions are the main sorption mechanisms. Additionally, small MPs, biodegradable MPs and aged conventional MPs often exhibit stronger pesticide sorption capacity. As environmental conditions change, especially in simulated biological media, pesticides can desorb from MPs. The utilization of pesticides by environmental microorganisms is the main factor controlling the degradation rate of pesticides in the presence of MPs. Pesticide sorption by MPs and size effects of MPs on pesticides are related to the internal exposure level of biological pesticides and changes in pesticide toxicity in the presence of MPs. Most studies have suggested that MPs exacerbate the toxicological effects of pesticides on sentinel species. Hence, the environmental risks of pesticides are altered by MPs and the carrier function of MPs. Based on this, research on the affinity between MPs and various pesticides should be systematically conducted. During agricultural production, pesticides should be cautiously selected and used plastic film to ensure human health and ecological security.


Sujet(s)
Microplastiques , Pesticides , Humains , Sujet âgé , Microplastiques/toxicité , Microplastiques/composition chimique , Matières plastiques/composition chimique , Pesticides/toxicité , Pesticides/composition chimique , Agriculture , Sol , Adsorption
4.
Chemosphere ; 353: 141554, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38430940

RÉSUMÉ

Microbial biodegradation of commercially available poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based bio-plastic has been pursued at high temperatures exceeding 55 °C. Herein, we first reported three newly isolated fungal strains from farmland soil samples of Republic of Korea namely, Pyrenochaetopsis sp. strain K2, Staphylotrichum sp. S2-1, and Humicola sp. strain S2-3 were capable of degrading a commercial bio-plastic film with degradation rates of 9.5, 8.6, and 12.2%, respectively after 3 months incubation at ambient conditions. Scanning electron microscopy (SEM) analyses showed that bio-plastic film was extensively fragmented with severe cracking on the surface structure after incubation with isolated fungal strains. X-ray diffraction (XRD) analysis also revealed that high crystallinity of the commercial bio-plastic film was significantly decreased after degradation by fungal strains. Liquid chromatography-mass spectrometry (LC-MS) analyses of the fungal culture supernatants containing the bio-plastic film showed the peaks for adipic acid, terephthalic acid (TPA), and terephthalate-butylene (TB) as major metabolites, suggesting cleavage of ester bonds and accumulation of TPA. Furthermore, a consortium of fungal strain K2 with TPA degrading bacterium Pigmentiphaga sp. strain P3-2 isolated from the same sampling site exhibited faster degradation rate of the bio-plastic film within 1 month of incubation with achieving complete biodegradation of accumulated TPA. We assume that the extracellular lipase activity presented in the fungal cultures could hydrolyze the ester bonds of PBAT component of bio-plastic film. Taken together, the fungal and bacterial consortium investigated herein could be beneficial for efficient biodegradation of the commercial bio-plastic film at ambient conditions.


Sujet(s)
Alcènes , Acides phtaliques , Polyesters , Amidon , Amidon/composition chimique , Polyesters/composition chimique , Adipates , Champignons , Esters
5.
J Hazard Mater ; 467: 133680, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38325094

RÉSUMÉ

Biodegradable mulches are widely recognized as ecologically friendly substances. However, their degradation percentage upon entering soils may vary based on mulch type and soil microbial activities, raising concerns about potential increases in microplastics (MPs). The effects of using different types of mulch on soil carbon pools and its potential to accelerate their depletion have not yet well understood. Therefore, we conducted an 18-month experiment to investigate mulch biodegradation and its effects on CO2 emissions. The experiment included burying soil with biodegradable mulch made of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), and control treatments with traditional mulch (PE) and no mulch (CK). The results indicated that PE did not degrade, and the degradation percentage of PLA and PBAT were 46.2% and 88.1%, and the MPs produced by the degradation were 6.7 × 104 and 37.2 × 104 items/m2, respectively. Biodegradable mulch, particularly PLA, can enhance soil microbial diversity and foster more intricate bacterial communities compared to PE. The CO2 emissions were 0.58, 0.74, 0.99, and 0.86 g C/kg in CK, PE, PLA, , PBAT, respectively. A positive correlation was observed between microbial abundance and diversity with CO2 emissions, while a negative correlation was observed with soil total organic carbon. Biodegradable mulch enhanced the transformation of soil organic C into CO2 by stimulating microbial activity.


Sujet(s)
Adipates , Dioxyde de carbone , Microplastiques , Microplastiques/toxicité , Matières plastiques , Carbone , Polyesters , Sol
6.
J Environ Manage ; 353: 120241, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38301473

RÉSUMÉ

With global population growth and climate change, food security and global warming have emerged as two major challenges to agricultural development. Plastic film mulching (PM) has long been used to improve yields in rain-fed agricultural systems, but few studies have focused on soil gas emissions from mulched rainfed potatoes on a long-term and regional scale. This study integrated field data with the Denitrification-Decomposition (DNDC) model to evaluate the impacts of PM on potato yields, greenhouse gas (GHG) and ammonia (NH3) emissions in rainfed agricultural systems in China. We found that PM increased potato yield by 39.7 % (1505 kg ha-1), carbon dioxide (CO2) emissions by 15.4 % (123 kg CO2 eq ha-1), nitrous oxide (N2O) emissions by 47.8 % (1016 kg CO2 eq ha-1), and global warming potential (GWP) by 38.9 % (1030 kg CO2 eq ha-1), while NH3 volatilization decreased by 33.9 % (8.4 kg NH3 ha-1), and methane (CH4) emissions were little changed compared to CK. Specifically, the yield after PM significantly increased in South China (SC), North China (NC), and Northwest China (NWC), with increases of 66.1 % (2429 kg ha-1), 44.1 % (1173 kg ha-1), and 43.6 % (956 kg ha-1) compared to CK, respectively. The increase in GWP and greenhouse gas emission intensity (GHGI) under PM was more pronounced in the Northeast China (NEC) and NWC regions, with respective increases of 57.1 % and 60.2 % in GWP, 16.9 % and 10.3 % in GHGI. While in the Middle and Lower reaches of the Yangtze River (MLYR) and SC, PM decreased GHGI with 10.2 % and 31.1 %, respectively. PM significantly reduced NH3 emissions in all regions and these reductions were most significant in Southwest China (SWC), SCand MLYR, which were 41 %, 38.0 %, and 38.0 % lower than CK, respectively. In addition, climatic and edaphic variables were the main contributors to GHG and NH3 emissions. In conclusion, it is appropriate to promote the use of PM in the MLYR and SC regions, because of the ability to increase yields while reducing environmental impacts (lower GHGI and NH3 emissions). The findings provide a theoretical basis for sustainable agricultural production of PM potatoes.


Sujet(s)
Gaz à effet de serre , Solanum tuberosum , Gaz à effet de serre/analyse , Ammoniac , Dioxyde de carbone/analyse , Agriculture , Sol , Chine , Méthane/analyse , Protoxyde d'azote/analyse , Engrais/analyse
7.
J Hazard Mater ; 468: 133820, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38382339

RÉSUMÉ

The escalating accumulation of plastic waste in ecosystems poses a significant health concern to soil environment, yet the environmental effects of plastics remains largely unexplored. Biodegradable plastics could offer a viable alternative to conventional persistent plastics, but our understanding of their potential benefits or detrimental effects on the decomposition of plant debris by soil biomass is limited. In this study, we conducted a year-long field experiment to examine the environmental response and impact on plant debris decomposition in the presence of varying quantities of persistent versus biodegradable plastics. Our findings indicate that the decomposition rate decreased by 2.8-4.9% for persistent plastics, while it increased by 1.3-4.2% for biodegradable plastics. Persistent plastics primarily induced adverse effects, including a reduction in soil nutrients, microbial diversity, bioturbation, enzyme activity, easily decomposable carbon, and microbial biomass carbon in plant debris. In contrast, biodegradable plastics resulted in beneficial effects such as an increase in enzyme activity, microbial biomass carbon, and easily decomposable carbon. We also observed that the decomposition rate of plant residues and nutrient release are closely associated with changes in the organic carbon chemical structure induced by different plastic film fragments. A significant shift in alkoxy carbon content facilitated the release of nutrients and soluble carbon, while modifications in carboxyl and aromatic carbon content hindered their release. Overall, our study reveals over one year that biodegradable plastics primarily induce positive effects on the decomposition of soil organic matter.


Sujet(s)
Matières plastiques biodégradables , Sol , Sol/composition chimique , Écosystème , Composés chimiques organiques , Carbone , Matières plastiques/composition chimique
8.
Heliyon ; 10(1): e23098, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38205303

RÉSUMÉ

Population expansion is causing an increase in dependence on plastic materials. The worst aspects of conventional plastics were their inability to biodegrade, their poor capacity to transmit water vapor, and their production of greenhouse gases. Usages of bioplastics are necessary for the advancement of a green economy and environment in order to eradicate these drawbacks of traditional plastics. In this study, reinforced bioplastic film was produced from anchote (Coccinia Abyssinica) starch and enset (Ensete Ventricosum) fiber. Starch from anchote was extracted and its properties were characterized via adequate techniques. The maximum carbohydrate content (86.26 ± 0.25%w/w) of anchote starch indicates that it is suitable feedstock for plastic film production. In addition, extracted starch was characterized by SEM, FTIR, TGA and XRD. The reinforcing material enset fiber was extracted and characterized by FTIR and XRD. The results of both feedstock materials exhibited the good characteristics and viability for bioplastic film production. Enset fiber loadings used were 0 %, 4 %, 8 %, 12 % and 16 % w/w in starch basis. Tensile strength, elongation, thickness, moisture content, transparency, solubility and density of produced bioplastic were determined. Tensile force grew and elongation reduced as fiber loading rose up to 8 %. The tensile strength gradually declined with increasing fiber loading. Additionally, the created bioplastic film's groups of functions and chemical bonds were examined. In comparison to unreinforced plastic film, the results showed that the reinforced bioplastic film used in this study was an excellent and effective product.

9.
J Hazard Mater ; 464: 133027, 2024 02 15.
Article de Anglais | MEDLINE | ID: mdl-37995638

RÉSUMÉ

Film covers have been widely applied worldwide. However, the effects of long-term plastic film mulching use on heavy metal (HM) activity in soil remain unclear. This study focused on farmland in the upstream part of the Pearl River in China and collected 103 soil samples after 2, 5, and 15 years of plastic film mulching. The main environmental factors controlling microplastics (MPs), plasticizer phthalic acid esters (PAEs), HM pollution characteristics, and HM activity were analyzed. The results showed that Polyethylene (PE) and di(2-ethylhexyl) dicyclohexyl phthalate (DCHP) were the main MPs and PAEs, respectively. The abundance of MPs and the concentrations of free HM ions (Cd, Cu, and Ni) in the soil solution increased with increasing plastic film mulching duration. The Partial Least Squares Path Model (PLS-PM) indicated that after plastic film mulching, soil chemical properties (pH/amorphous Fe) and biological properties (Dissolved organic carbon/ Easily oxidizable carbon/Microbial biomass carbon) were the main controlling factors for free and complexed HM ions (Cd, Pb, Cu, and Ni). These results suggest that, after plastic film mulching, MPs indirectly regulate HM activity by altering soil properties. This study provides a new perspective for the management of MPs and HM activities in agricultural ecosystems.


Sujet(s)
Métaux lourds , Polluants du sol , Sol/composition chimique , Microplastiques , Matières plastiques/composition chimique , Écosystème , Cadmium , Méthode des moindres carrés , Polluants du sol/analyse , Agriculture/méthodes , Chine , Ions , Carbone
10.
Environ Sci Technol ; 57(44): 16788-16799, 2023 11 07.
Article de Anglais | MEDLINE | ID: mdl-37897490

RÉSUMÉ

Recently, studies have highlighted the potential danger for soil organisms posed by film-derived microplastics (MPs). However, the majority of those does not accurately reflect the field conditions and the degree of MP contamination that can be found in actual settings. To fill the gap between laboratory and field scenarios, the polyethylene (PE) plastic film was made into PE-MPs and aged. Toxicity and molecular mechanisms of pristine PE-MPs (PMPs) and aged PE-MPs (AMPs) with the concentration at 500 mg/kg of dry weight were determined after 14 days of exposure by measuring the oxidative stress, osmoregulation pressure, gut microbiota, and metabolic responses in earthworms under environmentally relevant conditions. Our research showed that, when compared to PMPs (13.13 ± 1.99 items/g), AMPs accumulated more (16.19 ± 8.47 items/g), caused more severe tissue lesions, and caused a higher increase of cell membrane osmotic pressure in earthworms' intestines. Furthermore, the proportion of probiotic bacteria Lactobacillus johnsonii in the gut bacterial communities was 24.26%, 23.26%, and 12.96%, while the proportion of pathogenic bacteria of the phylum Verrucomicrobia was 2.28%, 4.79%, and 10.39% in the control and PMP- and AMP-exposed earthworms, indicating that the decrease in number of probiotic bacteria and the increase in number of pathogenic bacteria were more pronounced in the gut of AMP- rather than PMP-exposed earthworms. Metabolomic analysis showed that AMP exposure reduced earthworm energy metabolites. Consequently, the constant need for energy may result in protein catabolism, which raises levels of some amino acids, disturbs normal cell homeostasis, causes changes of cell membrane osmolarity, and destroys the cell structure. Our studies showed that aged MPs, with the same characteristics as those found in the environment, have greater toxicity than pristine MPs. The results of this study broaden our understanding of the toxicological effects of MPs on soil organisms under environmentally relevant conditions.


Sujet(s)
Oligochaeta , Polluants du sol , Animaux , Microplastiques/toxicité , Matières plastiques/toxicité , Oligochaeta/métabolisme , Sol/composition chimique , Polluants du sol/toxicité , Polyéthylène
11.
Front Microbiol ; 14: 1205088, 2023.
Article de Anglais | MEDLINE | ID: mdl-37497548

RÉSUMÉ

Introduction: Microorganisms regulate soil nitrogen (N) cycling in cropping systems. However, how soil microbial functional genes involved in soil N cycling respond to mulching practices is not well known. Methods: We collected soil samples from a spring maize field mulched with crop straw (SM) and plastic film (FM) for 10-year and with no mulching (CK) in the Loess Plateau. Microbial functional genes involved in soil N cycling were quantified using metagenomic sequencing. We collected soil samples from a spring maize field mulched with crop straw (SM) and plastic film (FM) for 10-year and with no mulching (CK) in the Loess Plateau. Microbial functional genes involved in soil N cycling were quantified using metagenomic sequencing. Results: Compared to that in CK, the total abundance of genes involved in soil N cycling increased in SM but had no significant changes in FM. Specifically, SM increased the abundances of functional genes that involved in dissimilatory nitrate reduction to ammonium (nirB, napA, and nrfA), while FM decreased the abundances of functional genes that involved in ammonification (ureC and ureA) in comparison with CK. Other genes involved in assimilatory nitrate reduction, denitrification, and ammonia assimilation, however, were not significantly changed with mulching practices. The nirB and napA were derived from Proteobacteria (mainly Sorangium), and the ureC was derived from Actinobacteria (mainly Streptomyces). Mental test showed that the abundance of functional genes that involved in dissimilatory nitrate reduction was positively correlated with the contents of soil microbial biomass N, potential N mineralization, particulate organic N, and C fractions, while ammonification related gene abundance was positively correlated with soil pH, microbial biomass C and N, and mineral N contents. Discussion: Overall, this study showed that SM could improve soil N availability and promote the soil N cycling by increasing the abundance of functional genes that involved in DNRA, while FM reduced the abundance of functional genes that involved in ammonification and inhibited soil N cycling.

12.
Waste Manag ; 169: 253-266, 2023 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-37480740

RÉSUMÉ

This study aims to address the lack of relevant researches in the field of waste recycling using the Theory of Planned Behavior (TPB). A village-scale social survey was conducted to investigate the degree of farmers' participation in a waste plastic film program, i.e. Old for New in northwest China. The program required farmers to recycle plastic film residues in exchange for new films. Survey results showed that 67.5% of farmers accepted the program, yet only 14.5% of them actually participated. Logistic regression analysis was used to analyze questionnaire data and identify the factors that significantly affected farmers' recycling behavior. Principal component and weight analysis further showed that farmers' participation was mainly influenced by their attitudes (p < 0.01), with a relative weight (RW) of 46.3%. Yet, subjective norms (p < 0.1) and perceived behavior control (p < 0.1) had less effect on the degree of participation, and their RWs were 4.2% and 4.1% only, respectively. Moreover, the RW of plastic film usage characteristics and household characteristics reached up to 13.2% and 6.4%, respectively. Interestingly, environmental awareness (ß = 0.083) and compulsory environmental education (ß = 0.130) as surface factors strongly affected the farmers' adoption and response, with the RW of 25.7%. As such, the extended TPB model was established to analyze the participation behavior of farmers for stronger explanatory power. This study highlighted a promising strategy based on TPB for waste plastic film recycling and similar environmental management practices.


Sujet(s)
Agriculteurs , , Humains , Agriculture , Chine , Matières plastiques
13.
Environ Sci Pollut Res Int ; 30(38): 89238-89252, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37452244

RÉSUMÉ

Agricultural plastic films have caused serious plastic pollution. There are many studies that consider mechanical recycling an appropriate system for the recovery of post-consumption agricultural mulch film. The recovery effect of plastic film depends on the mechanical properties, the level of dirtiness of the post-consumption film, and the recycling process itself. In this study, the mechanical properties of four types of polyethylene plastic films with a thickness of 8, 10, 12, and 10 µm, weather-resistant, commonly used in Xinjiang cotton fields, were tested. As well as the friction coefficient between the film and soil, the cotton stalk, boll shell, and leaf with different moisture contents were measured. Then, the self-propelled straw chopping and residual film recycling combined machine collected the four types of mulch films. The results showed that the longitudinal mechanical properties of the plastic film were greater than the transversal ones, with the exception of the nominal tensile strain at break, and the tensile characteristics of the mulching film covered with soil were greater than those without soil. The dynamic or static friction coefficient between the film and the contact material had a linear relationship with the moisture content of the material. During the recycling operation, the better the mechanical properties of the plastic film, the higher the pick-up rate of the mulch film. The maximum longitudinal tensile force of 12-µm plastic film was 3.42 N, and the nominal tensile strain at break was 303.09%. The pick-up rate reached more than 93% when the 12-µm plastic film was recovered in autumn, which effectively reduced the residue of plastic film coverage in the current year. Moreover, the more soil that was present on the much film, the greater the soil content of the recycled film roll, and the stalk content also increased, but the change was small. The research provides a reference for the mechanical and the friction features of agricultural plastic film in Xinjiang, and provides a theoretical basis for the formulation of standards for film thickness and mechanical properties, as well as the design and optimization of a residual film collecting machine in the cotton field.


Sujet(s)
Agriculture , Matières plastiques , Friction , Agriculture/méthodes , Sol/composition chimique , Chine
14.
Heliyon ; 9(6): e16587, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37292288

RÉSUMÉ

Plastic mulch film is often believed to be a significant contributor to microplastic pollution in farmland soil, however, its direct impact in areas with high human activities remains unclear due to the presence of multiple pollution sources. This study aims to address this knowledge gap by investigating the impact of plastic film mulching on microplastic pollution in farmland soils in Guangdong province, China's largest economic province. The macroplastic residues in soils were investigated in 64 agricultural sites, and the microplastics were analyzed in typical plastic film mulched and nearby non-mulched farmland soils. The average concentration of macroplastic residues was 35.7 kg/ha and displayed a positive correlation with mulch film usage intensity. Contrarily, no significant correlation was found between macroplastic residues and microplastics, which exhibited an average abundance of 22,675 particles/kg soil. The pollution load index (PLI) model indicated that the microplastic pollution level was category I and comparatively higher in mulched farmland soils. Interestingly, polyethylene accounted for only 2.7% of the microplastics, while polyurethane was found to be the most abundant microplastic. According to the polymer hazard index (PHI) model, polyethylene posed a lower environmental risk than polyurethane in both mulched and non-mulched soils. These findings suggest that multiple sources other than plastic film mulching primarily contribute to microplastic pollution in farmland soils. This study enhances our understanding of microplastic sources and accumulation in farmland soils, offering crucial information on potential risks to the agroecosystem.

15.
Sci Total Environ ; 895: 165197, 2023 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-37391139

RÉSUMÉ

Over the course of the COVID-19 pandemic, people have realized the importance of wearing a mask. However, conventional nanofiber-based face masks impede communication between people because of their opacity. Moreover, it remains challenging to achieve both high filtration performance and transparency through fibrous mask filters without using harmful solvents. Herein, scalable transparent film-based filters with high transparency and collection efficiency are fabricated in a facile manner by means of corona discharging and punch stamping. Both methods improve the surface potential of the film while the punch stamping procedure generates micropores in the film, which enhances the electrostatic force between the film and particulate matter (PM), thereby improving the collection efficiency of the film. Moreover, the suggested fabrication method involves no nanofibers and harmful solvents, which mitigates the generation of microplastics and potential risks for the human body. The film-based filter provides a high PM2.5 collection efficiency of 99.9 % while maintaining a transparency of 52 % at the wavelength of 550 nm. This enables people to distinguish the facial expressions of a person wearing a mask composed of the proposed film-based filter. Moreover, the results of durability experiments indicate that the developed film-based filter is anti-fouling, liquid-resistant, microplastic-free and foldability.

16.
Huan Jing Ke Xue ; 44(6): 3439-3449, 2023 Jun 08.
Article de Chinois | MEDLINE | ID: mdl-37309961

RÉSUMÉ

Aiming to address the problem of soil environmental pollution caused by the large-scale use of plastic film in agricultural production in China, field experiments were carried out by applying degradable plastic film. Pumpkin was used as the research material to explore the effects of black common plastic film (CK), white degradation plastic film (WDF), black degradation plastic film (BDF), and black CO2-based degradable plastic film (C-DF) on soil physicochemical properties, root growth and yield, and soil quality. The results showed that the soil water content and temperature of the three degradable plastic films were lower than those of ordinary plastic films to different degrees; there was no significant difference in soil organic matter content among the treatments. The soil available potassium content of the C-DF treatment was lower than that of CK, and WDF and BDF had no significant effect. Compared with those in CK and WDF, soil total nitrogen and available nitrogen contents in the BDF and C-DF treatments were lower, and the difference between treatments reached a significant level. Compared with that of CK, the catalase activities of the three types of degradation membranes were significantly increased by 2.9%-6.8%, and the sucrase was significantly decreased by 33.3%-38.4%. Compared with that in CK, the soil cellulase activity in the BDF treatment was significantly increased by 63.8%, whereas WDF and C-DF had no significant effects. The three types of degradable film treatments could promote the growth of underground roots, and the growth vigor was obviously enhanced. The yield of pumpkin treated with BDF and C-DF was close to that of CK, and the yield of pumpkin treated with BDF was significantly lower than that of CK by 11.4%. The experimental results showed that the effects of the BDF and C-DF treatments on soil quality and yield were comparable to those of CK. According to the results, two types of black degradable plastic film can effectively replace ordinary plastic film in the high-temperature production season.


Sujet(s)
Agriculture , Sol , Chine , Azote , Matières plastiques
17.
Foods ; 12(10)2023 May 09.
Article de Anglais | MEDLINE | ID: mdl-37238753

RÉSUMÉ

Serra da Estrela cheese with a Protected Designation of Origin (PDO) is a traditional cheese that is wrapped in paper without vacuum. High-pressure processing (HPP), which requires vacuum packaging of the cheese, has been used for its cold pasteurization to overcome safety issues. In this study, two packaging systems were studied: non-vacuum greaseproof paper wrapping package and vacuum packaging in plastic film. Lactococci, lactobacilli, enterococci, and total mesophiles reached ca. 8 log cfu g-1 and 4-6 log cfu g-1 in control (unpasteurized) and HPP-treated cheeses, respectively, with no significant differences between packaging systems. Spoilage microorganisms' viable cell numbers were reduced to <3 log cfu g-1 (quantification limit) in HPP-treated cheeses, independently of the packaging system. Yeasts and molds reached >5 log cfu g-1 in non-vacuum paper-wrapped cheeses. A vacuum-packaging system enabled better control of cheese proteolysis, which was revealed to be closer to that of the original control cheese values at the end of the 10-month storage period. In addition, cheese stored under vacuum film packaging became harder than non-vacuum paper-wrapped cheeses at each time point. Overall, conventional non-vacuum paper wrapping is adequate for short storage periods (<3 months), but for long periods vacuum packaging in plastic film is preferable.

18.
Plants (Basel) ; 12(9)2023 May 05.
Article de Anglais | MEDLINE | ID: mdl-37176946

RÉSUMÉ

The rhizosphere microbiota plays a critical and crucial role in plant health and growth, assisting plants in resisting adverse stresses, including soil salinity. Plastic film mulching is an important method to adjust soil properties and improve crop yield, especially in saline-alkali soil. However, it remains unclear whether and to what extent the association between these improvements and rhizosphere microbiota exists. Here, from a field survey and a greenhouse mesocosm experiment, we found that mulching plastic films on saline-alkali soil can promote the growth of soybeans in the field. Results of the greenhouse experiment showed that soybeans grew better in unsterilized saline-alkali soil than in sterilized saline-alkali soil under plastic film mulching. By detecting the variations in soil properties and analyzing the high-throughput sequencing data, we found that with the effect of film mulching, soil moisture content was effectively maintained, soil salinity was obviously reduced, and rhizosphere bacterial and fungal communities were significantly changed. Ulteriorly, correlation analysis methods were applied. The optimization of soil properties ameliorated the survival conditions of soil microbes and promoted the increase in relative abundance of potential beneficial microorganisms, contributing to the growth of soybeans. Furthermore, the classification of potential key rhizosphere microbial OTUs were identified. In summary, our study suggests the important influence of soil properties as drivers on the alteration of rhizosphere microbial communities and indicates the important role of rhizosphere microbiota in promoting plant performance in saline-alkali soil under plastic film mulching.

19.
Front Microbiol ; 14: 1143769, 2023.
Article de Anglais | MEDLINE | ID: mdl-37113240

RÉSUMÉ

The increase in the production of highly recalcitrant plastic materials, and their accumulation in ecosystems, generates the need to investigate new sustainable strategies to reduce this type of pollution. Based on recent works, the use of microbial consortia could contribute to improving plastic biodegradation performance. This work deals with the selection and characterization of plastic-degrading microbial consortia using a sequential and induced enrichment technique from artificially contaminated microcosms. The microcosm consisted of a soil sample in which LLDPE (linear low-density polyethylene) was buried. Consortia were obtained from the initial sample by sequential enrichment in a culture medium with LLDPE-type plastic material (in film or powder format) as the sole carbon source. Enrichment cultures were incubated for 105 days with monthly transfer to fresh medium. The abundance and diversity of total bacteria and fungi were monitored. Like LLDPE, lignin is a very complex polymer, so its biodegradation is closely linked to that of some recalcitrant plastics. For this reason, counting of ligninolytic microorganisms from the different enrichments was also performed. Additionally, the consortium members were isolated, molecularly identified and enzymatically characterized. The results revealed a loss of microbial diversity at each culture transfer at the end of the induced selection process. The consortium selected from selective enrichment in cultures with LLDPE in powder form was more effective compared to the consortium selected in cultures with LLDPE in film form, resulting in a reduction of microplastic weight between 2.5 and 5.5%. Some members of the consortia showed a wide range of enzymatic activities related to the degradation of recalcitrant plastic polymers, with Pseudomonas aeruginosa REBP5 or Pseudomonas alloputida REBP7 strains standing out. The strains identified as Castellaniella denitrificans REBF6 and Debaryomyces hansenii RELF8 were also considered relevant members of the consortia although they showed more discrete enzymatic profiles. Other consortium members could collaborate in the prior degradation of additives accompanying the LLDPE polymer, facilitating the subsequent access of other real degraders of the plastic structure. Although preliminary, the microbial consortia selected in this work contribute to the current knowledge of the degradation of recalcitrant plastics of anthropogenic origin accumulated in natural environments.

20.
J Hazard Mater ; 445: 130638, 2023 03 05.
Article de Anglais | MEDLINE | ID: mdl-37056010

RÉSUMÉ

Microplastics (MPs) that enter the soil can alter the physicochemical and biochemical properties of soil and affect speciation of heavy metals (HMs), thereby perturbing the bioavailability of HMs. However, the mechanisms underlying these effects are not understood. Therefore, we investigated the effects of MPs from poly (butyleneadipate-co-terephthalate)-based biodegradable mulch (BM) and polyethylene mulch (PM) in Cd- or As-contaminated soil on soil properties and speciation of HMs. MPs were characterised using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The addition of MPs reduced the bioavailability of HMs in soil and promoted the transformation of HMs into inert fractions. The mechanisms underlying the reduction of the bioavailability of HMs in soils could be as follows: (1) the entry of MPs into the soil changed its properties, which reduced the bioavailability of HMs; (2) FTIR and XPS analyses revealed that the hydroxyl and carboxyl groups and benzene ring present on the surface of aged MPs stabilized complexes (As(V)-O) with As(V) may have directly reduced the bioavailability of As(V) in soil; (3) aged BM exposed more amounts and types of reactive functional groups and was more effective in stabilising soil HMs than PM. Overall, this study provides new insights regarding the complexation mechanisms of soil HMs by MPs from different plastic mulch sources.


Sujet(s)
Polyéthylène , Polluants du sol , Microplastiques , Matières plastiques , Cadmium , Biodisponibilité , Sol
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...